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Modal Expansion of Dyadic Green’s Functions

of the Cylindrical Chirowaveguide
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Abstract— The dyadic Green’s functions of the cylindrical

chirowavegnide are derived by modal expansion. Bohren’s de-

composition of the electromagnetic field is nsed to obtain the

vector wave fnnctions. The magnetic dyadic Green’s fnnction
that is purely solenoidal is first derived and the electric dyadic

Green’s function is then obtained by manipulating the magnetic
dyadic Green’s function. The singular term in the expression of
the electric dyadic Green’s function is reinstated through the
manipulation procedure.

I. INTRODUCTION

R ECENTLY, the theory of chirowaveguide has attracted

much research interest because of the potential appli-

cations of chirowaveguides in the area of electromagnetic.

Dyadic Green’s functions in an unbounded chiral medium

[1], [2] have been found. One- and two-dimensional dyadic
Green’s functions in chiral media have also been determined

[3]. Although Engheta et al. [4] obtained a modal expansion of

the electric dyadic Green’s function in terms of the spherical

vector wave functions for the case of scattering from a chiral

sphere, their result is not a complete expansion [5] and is

only applicable to source-free regions. More recently, Li et

al. [6] formulated the dyadic Green’s functions for a radially

multilayered chiral sphere and the singular term accounting

for the electric field in the source point was reinstated, but

the reason for this was not explained. In this Letter, we seek

the modal expansion of the dyadic Green’s functions of the

cylindrical chirowaveguide that have not yet been available in

the literature. The magnetic dyadic Green’s function, which

is purely solenoidal, is derived first, and the electric dyadic

Green function is then obtained through a manipulation of the

magnetic dyadic Green’s function. It is found that the singular

term of the electric dyadic Green’s function is just a natural

outcome of the manipulation procedure.

11. FORMULATION

Consider a lossless, reciprocal, homogeneous chiral
medium. The electromagnetic field is characterized by the

following constitutive equations [7]-[9]:

D=6@+/?vxE] (la)

l?=~[H+pvx H] (lb)
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Fig. 1. The geometry of the cylindrical chirowaveguide

where e and p are, respectively, the permittivity and perme-

ability of the medium and /3 is a measure of the chirality. In

the following formulation, the electromagnetic field, (/3, H) is

assumed to be time-harmonic with e–~wt dependence. Putting

(la) and (lb) into Maxwell’s equations, we obtain the vector

wave equations

v x v x E(R) – 272/3v x E(R) – #E(R)

= jJLL(7/k)2(l + pvx )J(q (2a)

v x v x H(R) - 2#/n7 x H(R) – #H(R)

= (~/k)’v x J(R) (2b)

where ~ 2 = k2/(1–k2~2), k = w~, and J is the impressed

current source density. The equations governing the electric

dyadic Green’s function, ~e, and the magnetic dyadic Green’s

function, Gm, are therefore given by

V x V x ~e(R, R’) – 272fN7

x ~e(R, R’) – ~2~.(R, R’)

= jUM(~/k)2(l + @Vx)~6(R – R’) (3a)

v x v x 72m(R, R’) – 272m7

x Gm(R, R’) – V2~m(R, R’)

= (V/k)2V x i5(R - R’) (3b)

—
where ~ is the unit dyad and 6(R— R’) is the three-dimensional

delta function. The boundary conditions of a chirowaveguide

with perfectly conducting walls are

nxE=O (4a)

n x ~e(R, R’) =0 (4b)
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where n is an outward-pointing unit normal vector defined on

the surface of the waveguide. By using Bohren’s decomposi-

tion of the electromagnetic field [10], we may transform the

electromagnetic field as follows:

(5)

where

and when the transformed fields, QI and Qz, satisfy the

following two equations:

‘XM=K-N%] ‘7)

‘7XVXF$1=Fwill ‘8)
with

k+ =k/(1 – k~) (9a)

k- =k/(1 + I@). (9b)

E and H tlhen satisfy, respectively, (2a) and (2b). In the

case of the cylindrical chirowaveguide as shown in Fig. 1,

the following forms of QI and Qz defined in the cylind;cal

coordinates obviously satisfy (7) and (8):

QIx,n(~)= &n[~IA,n(~) + ~IA,n(~)]
Q2x,n(~) = ~A,.[~2A,.(~) + ~2A,n(~)l

where

(lOa)

(lOb)

(ha)

(llb)

(llC)

(lld)

In (10) and (1 1), the subscripts Al, ~2, and n attached to the

vector wave functions designating discrete eigenvalues and

h is determined from the dispersion equations A? + h2 =

k:, A;+ h2 = k?.. Jn(A1r) and Jn(A2r) are Bessel functions

of the first kind and order n. The coefficients A~l. and B~z ~

and the eigenvalues ,41 and AZ are determined by matching

the boundary condition of the electric field on the surface of

the cylindrical chirowaveguide [11]. That is

nxE=nx(tQ1+Q2) =0. (12)

When (12) is satisfied, E and II can be expressed as linear

combinations of QI and Q2 as in (5). It was found that

these modes are mutually orthogonal (eq. (21) in [12]) for

a time-harmonic

write

E(R) = ~

AlA2n

z

H(R) = ~

AIAzn

2

electromagnetic field and therefore we can

~ ,J (13b)

where 17.1,, n(+h) are expansion coefficients that are readily

determined by using the method given in [13]. In (13a) and

(13b) the upper lines are for modes propagating in the positive

z direction while the lower lines are for those propagating in

the negative z direction. Note that (13a) is valid only outside

the source point. The solenoidal magnetic dyadic Green’s

function ~m,however, can still be found from (13b) by using

the following relationship:

H(R =
//1

~m(R, R’) J(R’) du’ (14)

1“

where V is the volume containing the current source, J(R’).

The result is

where the primed functions are defined with respect to the

source coordinates and 1~1~zn (;h) are normalization con-
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stants given by

{[

~’_ (n - 1)’ J’ (A’s)

a2 1
n—1

(16)

in which

6.0=
{

1, when n = O

0, when n # O.

Finally Ge is derived from ~m as in [14] by treating am as

a generalized function. The singular term in ~e results from—
a differential operation on the discontinuous Gm, i.e.,

Ge(R, R’)= 1 – k?p’
V XFm(R, R’)

‘Y2

- /3(1- k2/32)Gm(R,R’) - --$76(R- l?.’)

– –$ZZ6(R,R’)—

‘(1+’w9Q2J+h)

“Q’’(-)(+h)+i(l-’Tt)

~Qm,n(+’)Q&rt)(W)
1

z z z’ (17)

where z is a unit_ vector in the z direction. Note that the

singular term in ~e is the same as those appearing in the

electric dyadic Green’s functions for nonchiral cylindrical

waveguides [14].
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