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‘Modal Expansion of Dyadic Green’s Functions
of the Cylindrical Chirowaveguide

- H. T. Hui, Student Member, IEEE, and Edward K. N. Yung, Senior Member, IEEE.

Abstract— The dyadic Green’s functions of the cylindrical
chirowaveguide are derived by modal expansion. Bohren’s de-
composition of the electromagnetic field is used to obtain the
vector wave functions. The magnetic dyadic Green’s function
that is purely solenoidal is first derived and the electric dyadic
Green’s function is then obtained by manipulating the magnetic
dyadic Green’s function. The singular term in the expression of
the electric dyadic Green’s function is reinstated through the
manipulation procedure.

1. INTRODUCTION

ECENTLY, the theory of chirowaveguide has attracted

much research interest because of the potential appli-
cations of chirowaveguides in the area of electromagnetics.
Dyadic Green’s functions in an unbounded chiral medium
[1], [2] have been found. One- and two-dimensional dyadic
Green’s function$ in chiral media have also been determined
[3]. Although Engheta et al. [4] obtained a modal expansion of
the electric dyadic Green’s function in terms of the spherical
vector wave functions for the case of scattering from a chiral
sphere, their result is not a complete expansion [5] and is
only applicable to source-free regions. More recently, Li er
al. [6] formulated the dyadic Green’s functions for a radially
multilayered chiral sphere and the singular term accounting
for the electric field in the source point was reinstated, but
the reason for this was not explained. In this Letter, we seek
the modal expansion of the dyadic Green’s functions of the
cylindrical chirowaveguide that have not yet been available in
the literature. The magnetic dyadic Green’s function, which
is purely solenoidal, is derived first, and the electric dyadic
Green function is then obtained through a manipulation of the
magnetic dyadic Green’s function. It is found that the singular
term of the electric dyadic Green’s function is just a natural
outcome of the manipulation procedure.

II. FORMULATION

Consider a lossless, reciprocal, homogeneous chiral
medium. The electromagnetic field is characterized by the
following constitutive equations [7]-[9]:

D =¢[E+ 3V x E]
B =u[H + 8V x H|

(1a)
(1b)
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Fig. 1. The geometry of the cylindrical chirowaveguide.
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where ¢ and p are, respectively, the permittivity and perme-
ability of the medium and 3 is a measure of the chirality. In
the following formulation, the electromagnetic field, (FE, H) is
assumed to be time-harmonic with e~7“* dependence. Putting
(1a) and (1b) into Maxwell’s equations, we obtain the vector
wave equations '

V x V x E(R) — 2v°8V x E(R) — v*E(R)

= jwu(v/k)*(1 + BV X)J(R) (2a)
V x Vx H(R)—2v’6V x H(R) - v*H(R)
= (7/k)*V x J(R) (2b)

where v2 = k% /(1—k?$3?), k = w,/J€, and J is the impressed
current source density. The equations governing the electric
dyadic Green’s function, Ge, and the magnetic dyadic Green’s
function, Gy, are therefore given by

V X V x Ge(R, R') — 2428V
x Ge(R,R') — V*G.(R, R

= jon(v/k) (1+ BVO)IS(R- R)  (3a)
V XV x Gm(R,R) — 2423V
X Gm(R,R) — v’ Gm(R, R
= (v/k)?V x I§(R - R (3b)

where T is the unit dyad and §(R— R’) is the three-dimensional
delta function. The boundary conditions of a chirowaveguide
with perfectly conducting walls are

nxE=0
n Xae(R,R/) =0

(4)
(4b)
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where # is an outward-pointing unit normal vector defined on
the surface of the waveguide. By using Bohren’s decomposi-
tion of the electromagnetic field [10], we may transform the
electromagnetic field as follows:

A0 @) ©

t=jvule (6)

and when the transformed fields, @; and @,, satisfy the
following two equations:

where

Q. 0 1[Q
v @l Aa] o
2
vxvx[Qﬂ—[’“g kg_HQﬂ @®)
with
ky =k/(1—kp) (%2)
_=k/(1+kB). (9b)

E and H then satisfy, respectively, (2a) and (2b). In the
case of the cylindrical chirowaveguide as shown in Fig. 1,
the following forms of Q; and @, defined in the cylindrical
coordinates obviously satisfy (7) and (8):

leln(h) = A/\m[Mlhn(h) + N1>~1n(h)
Q2>\2n(h) = B>\2H[M2)\2n(h) + Nzkzn(h)

(10a)

]
] (10b)

where
Jn()\ﬂ”)
T
_BJn()\lr)
697"
1
=—VX Nl)\ln(h)

ket
i D)

I oiha

My, n(h) =
(11a)

or .
h Jn(A1r) | eI eihs
r
)\%Jn()\lr)
= LV Mann(h)
ky

J ()\2’]‘)

(11b)

M2A2n(h) = 8«] ()\27“) ejn¢ejhz

gr
= —V X N2>\2n<h)
B , 0 (/\27")

(11c)

1
Nayn(h) === _

J ()\27.) ejnd>ejhz
)\an(AQT)
1
=7 My, (h). (11d)

In (10) and (11), the subscripts A1, A2, and n attached to the
vector wave functions designating discrete eigenvalues and

h is determined from the dispersion equations A? + A% =
k2, 034+ h? = k2. J,(A\17) and J,(Xor) are Bessel functions
of the first kind and order n. The coefficients Ay,, and By,
and the eigenvalues A; and Ao are determined by matching
the boundary condition of the electric field on the surface of
the cylindrical chirowaveguide [11]. That is

nXxE=nx(Q,+Q;)=0.
When (12) is satisfied, & and H can be expressed as linear
combinations of Q; and @, as in (5). It was found that

these modes are mutually orthogonal (eq. (21) in [12]) for
a time-harmonic electromagnetic field and therefore we can

12)

write
ER)= Y, Daonn(EW)[1Quyn(£h) + Qarn(h)]
AlAgn
2z 7 (13a)
1
HR)= Y Tann(ER)@uan(Eh) = 7 Quan(Eh)]
A1 Azn
zz 2 (13b)

where 'y x,,(Eh) are expansion coefficients that are readily
determined by using the method given in [13]. In (13a) and
(13b) the upper lines are for modes propagating in the positive
z direction while the lower lines are for those propagating in
the negative z direction. Note that (13a) is valid only outside
the source point. The solenoidal magnetic dyadic Green’s
fanction Gy, however, can still be found from (13b) by using
the following relationship:

H(R= / / / Gm(R,R) - J(R) dv'
/.

where V' is the volume containing the current source, J(R').

(14)

The result is

/ 1
b= /\z)\:n L on(FR)(1 — k252)
[ <1+J t )Qnm(:th)

" Q1 (—n)(Fh) + (1 —-J ho \/7>

“Qua,n(ER)Q2x,(—n)(Fh)

<1+ kﬁf)Q2A2n +h)

1 k
Q1 (—ny(Fh) ~ ;( tﬁ

@ ()| 22

where the primed functions are defined with respect to the
source coordinates and Iy, x,»(Fh) are normalization con-
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stants given by [ (1 +j— k5 )Qn (Eh)
n . 2 h’2 n / kﬂ /~L
I>\1>\2n(:Fh) = i(-l) 871'] tAkln 1+ 7.2 15 . Ql)\ (_n)(:Fh) +(1- .7
ki) 2 1 t €
a? —1)2 'Ql)\ln(:th’)Q/ZAZ(—n)(:Fh)
20u0) ~ ol 7 22 [ - 22

8Jn-1(Mar) (1“—\[>Q2m (£h)

2
-J2 (Ma [ - } ;
n 1( 1 )+ or r=a Q;)\l(_n)(:f:h)‘l—%(l—_]é?\/g)

(n+ 1)2] 2
Ap — S | 2 (A
+ [ 1 P n+1( 10) -Q2A2n(ih)Q/2,\2(—n)(:Fh)} 2z 72 (7)

2
n+1 ()\1 T B “an

r—a t where z is a unit_vector in the z direction. Note that the
2, singular term in Ge is the same as those appearing in the

a . . N . . . .
( ) [J2(A2a) — o] £ T electric . dyadic Green’s functions for nonchiral cylindrical

- waveguides [14].
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